jaxopt.objective.ridge_regression
- jaxopt.objective.ridge_regression(params, l2reg, data)[source]
Ridge regression, i.e L2-regularized least squares.
\[\frac{1}{2n} ||XW - y||_2^2 + 0.5 \cdot \text{l2reg} \cdot ||W||_2^2\]- Parameters
W – parameters.
l2reg (
float
) – strenght of regularization.data (
Tuple
[Array
,Array
]) – a tuple(X, y)
whereX
is a matrix of shape(n_samples, n_features)
andy
is a vector of shape(n_samples,)
.params (Array) –
- Return type
float
- Returns
objective value.
Example:
value = ridge_regression(W, l2reg, (X, y))