jaxopt.ScipyBoundedMinimize
- class jaxopt.ScipyBoundedMinimize(method=None, dtype=<class 'numpy.float64'>, jit=True, implicit_diff_solve=None, has_aux=False, fun=None, callback=None, tol=None, options=None, maxiter=500, value_and_grad=False)[source]
- scipy.optimize.minimize wrapper. - This wrapper is for minimization subject to box constraints only. - Parameters
- method (Optional[str]) – 
- dtype (Optional[Any]) – 
- jit (bool) – 
- implicit_diff_solve (Optional[Callable]) – 
- has_aux (bool) – 
- fun (Callable) – 
- callback (Callable) – 
- tol (Optional[float]) – 
- options (Optional[Dict[str, Any]]) – 
- maxiter (int) – 
- value_and_grad (Union[bool, Callable]) – 
 
 - fun
- a smooth function of the form fun(x, *args, **kwargs). - Type
- Callable 
 
 - method
- the method argument for scipy.optimize.minimize. - Type
- Optional[str] 
 
 - tol
- the tol argument for scipy.optimize.minimize. - Type
- Optional[float] 
 
 - options
- the options argument for scipy.optimize.minimize. - Type
- Optional[Dict[str, Any]] 
 
 - dtype
- if not None, cast all NumPy arrays to this dtype. Note that some methods relying on FORTRAN code, such as the L-BFGS-B solver for scipy.optimize.minimize, require casting to float64. - Type
- Optional[Any] 
 
 - jit
- whether to JIT-compile JAX-based values and grad evals. - Type
- bool 
 
 - implicit_diff_solve
- the linear system solver to use. - Type
- Optional[Callable] 
 
 - has_aux
- whether function fun outputs one (False) or more values (True). When True it will be assumed by default that fun(…)[0] is the objective. - Type
- bool 
 
 - __init__(method=None, dtype=<class 'numpy.float64'>, jit=True, implicit_diff_solve=None, has_aux=False, fun=None, callback=None, tol=None, options=None, maxiter=500, value_and_grad=False)
- Parameters
- method (Optional[str]) – 
- dtype (Optional[Any]) – 
- jit (bool) – 
- implicit_diff_solve (Optional[Callable]) – 
- has_aux (bool) – 
- fun (Optional[Callable]) – 
- callback (Optional[Callable]) – 
- tol (Optional[float]) – 
- options (Optional[Dict[str, Any]]) – 
- maxiter (int) – 
- value_and_grad (Union[bool, Callable]) – 
 
- Return type
- None 
 
 - Methods - __init__([method, dtype, jit, ...])- attribute_names()- attribute_values()- l2_optimality_error(params, *args, **kwargs)- Computes the L2 optimality error. - optimality_fun(sol, bounds, *args, **kwargs)- Optimality function mapping compatible with @custom_root. - run(init_params, bounds, *args, **kwargs)- Runs the solver. - Attributes - callback- maxiter- value_and_grad- dtype
- alias of - float64
 - l2_optimality_error(params, *args, **kwargs)
- Computes the L2 optimality error. 
 - optimality_fun(sol, bounds, *args, **kwargs)[source]
- Optimality function mapping compatible with @custom_root. 
 - run(init_params, bounds, *args, **kwargs)[source]
- Runs the solver. - Parameters
- init_params ( - Any) – pytree containing the initial parameters.
- bounds ( - Optional[- Any]) – an optional tuple (lb, ub) of pytrees with structure identical to init_params, representing box constraints.
- *args – additional positional arguments to be passed to fun. 
- **kwargs – additional keyword arguments to be passed to fun. 
 
- Return type
- OptStep
- Returns
- (params, info).